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Abstract--In this paper, a two-phase mixture theory is presented which describes the 
deflagration-to-detonation transition (DDT) in reactive granular materials. The theory is based on 
the continuum theory of mixtures formulated to include the compressibility of all phases and the 
compaction behavior of the granular material. By requiring the model to satisfy an entropy 
inequality, specific expressions for the exchange of mass, momentum and energy are proposed 
which are consistent with known empirical models. The model is applied to describe the combustion 
processes associated with DDT in a pressed column of HMX. Numerical results, using the 
method-of-lines, are obtained for a representative column of length 10 cm packed to a 70% density 
with an average grain size of 100 #m. The results are found to predict the transition to detonation 
in run distances commensurate with experimental observations. Additional calculations have been 
carried out to demonstrate the effect of particle size and porosity and to study bed compaction 
by varying the compaction viscosity of the granular explosive. 

1. I N T R O D U C T I O N  

The modes of flame spread and the transition from deflagration to detonation (DDT) in 
gas-permeable, reactive granular materials have been the subject of extensive research--yet 
much remains to be understood. Generally, the process begins with ignition of a few grains 
by some external energy source. Initially, the combustion process is slow and dominated 
by heat conduction within and between grains. Andreev (1944) first postulated that the 
hot product gases generated during the early stage can penetrate into the pores of the 
unreacted material and, by preheating the grains, augment flame spread by several orders 
of magnitude above the deflagration rate driven by thermal conduction alone. This mode 
of flame spread can be self-accelerating and under conditions of strong confinement 
produce considerable gas pressures, which in turn leads to conditions favorable for 
detonation. This process is shown schematically in figure 1. 

Experimental studies of this phenomena have been most useful in clarifying the physical 
processes during DDT. The pioneering work of Griffiths & Groocock (1960) confirmed the 
existence of a convectively-driven flame front during flame spread in a column of HMX 
and showed that the onset of detonation was well-removed from the location at which 
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Figure 1. A schematic of flame spread in a heavily-confined column of explosive. 
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combustion began. Furthermore, this predetonation column length was shown to depend 
on the permeability of the granular bed. In similar studies, Price & Bernecker (1978) and 
Sandusky (1983) have studied the effects of  high-pressure gas generation on mechanical 
load transfer to the solid granular material. Their studies have shown that considerable 
bed compaction occurs in the region ahead of the flame front. This, in turn, reduces the 
permeability of  the granular bed and causes significant pressure buildup behind the flame 
front. This pressure further compresses the bed and accelerates the flame front. From these 
observations, it is evident that there is an important coupling of the thermal and 
mechanical processes associated with combustion, and that the mechanical processes are 
key factors in the formation of  the shock wave and in achieving detonation. Once a shock 
wave is formed, local "hot  spots" release additional energy which enhances wave growth 
to detonation. Plausible mechanisms for this localized heating are microscale shock 
focusing during pore collapse, plastic work heating and intergranular friction at grain 
boundaries or in regions of high shear; see, for example, Nunziato (1984). 

In view of  these general experimental conclusions, the process of DDT in a column 
essentially consists of  four regimes: conductive burning, convective burning, compressive 
burning and detonation. As a result of rapid gas pressurization, detonation occurs when 
pressure disturbances in the combustion regions focus and reinforce each other. It is 
important to note that hot gas convection is not the only possible driving mechanism for 
DDT. In recent experiments, Campbell (1980) used a column of HMX imbedded with 
gas-"impermeable" diaphragms and demonstrated that predetonation lengths were essen- 
tially the same as those found for columns without the diaphragms. This suggests that one 
important DDT process is the mechanical load transfer from the gas to the solid phase.t 
This load transfer can occur either through the use of plugs in the flow such as diaphragms 
or by the drag forces acting on the grains during convective flow which cause compaction 
and the formation of  a plug. 

It is clear that the coupled thermal-mechanical processes associated with the combustion 
of a granular explosive must be included in any complete model of the flow field. However, 
the formulation of the conservation laws which govern these complex processes is currently 
a controversial subject in the multiphase flow literature. No procedure is universally 
accepted and thus several different approaches have been employed. All current devel- 
opments utilize a continuum approach which describe the field equations assuming the 
coexistence of the phases at every point in the flow field. It is in the derivation of  these 
laws and in their final form where the controversy lies. 

One approach to developing the two-phase flow equations involves bypassing the 
discrete nature of the separate phases through the use of averaging methods [of time, 
volume or mass; see, for example, Drew & Segel (1971) and Ishii (1975)]. In this case, the 
conservation equations are derived for averaged flow variables. Specific to reactive flow 
modeling is the work of Gough & Zwarts (1979) in which area averaging is used. 

Another approach to the derivation of the field equations utilizes continuum mixture 
theory. In this case, conservation laws are determined for each phase which also account 
for the exchange of mass, momentum and energy between phases (i.e. drag etc.). In 
addition, conservation of mass, momentum and energy is required for the overall mixture 
[see Truesdell (1984) for details] and this imposes constraints on the interactions between 
phases. Typical problem formulations utilizing these types of conservation equations can 
be found in the text by Wallis (1969). Previous work using this approach which is relevant 
to DDT modeling includes the works of Krier and coworkers (Beckstead e t  al. 1977; Krier 
& Gokhale 1978; Butler e t  al. 1982), Kuo & Summerfield (1974) and Kooker (1981). 

tThis view of DDT is especially appropriate for solid explosives and has been described in the models of 
Macek (1959), Tarver et al. (1976) and Forest & Mader (1978). They treat the problem as one in which 
the gas generated due to combustion acts strictly as a "driving piston" on the material and does not 
permeate into the explosive. In this case, the onset of detonation occurs far in front of the flame front 
and is due to the coalescence of the pressure disturbances which result from the rapid gas generation behind 
the flame front. 
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In considering a complete treatment of reactive two-phase flow (total nonequilibrium), 
a closure problem exists. This problem results from including the volume fraction of a 
phase as an independent kinematic variable and can be seen by comparing the set of 
unknowns to the set of known relationships. For simplicity, we can consider two phases 
and one-dimensional flow. For each phase there are 5 quantities to be determined during 
flame spread, i.e. pressure, temperature, density, velocity and volume fraction; a total of 
10 unknowns. The conservative laws (three for each phase), the state relation (one for each 
phase) and the volume constraint (sum of the volume fractions of all phases must be one) 
only result in 9 equations, and hence, the problem is underdetermined. 

Previous studies of reactive multiphase flow have used several different approaches 
toward achieving closure. Some models consider the solid phase to be incompressible (e.g. 
Gough & Zwarts 1979). This constraint is incompatible with a solid equation of state since 
an infinite sound speed is implied. Bed compaction due to compressibility of the granular 
material as well as detonation cannot be meaningfully addressed with this approximation 
and thus this type of modeling can only be representative of reactive, two-phase flow with 
low-pressure gas generation (low pressure is to imply pressure regimes in which there is 
little compression and distortion of the solid grains). 

Another type of constraint used in classical two-phase flow theory assumes pressure 
equilibrium between phases (e.g. Wallis 1969). This constraint produces a coupling of the 
sound speeds of the phases. This assumption is not acceptable, especially when it is 
recognized that to describe bed compaction during the transition to detonation, pressure 
nonequilibrium effects must be included. Previous work has also shown that the resulting 
conservation equations are ill-conditioned, implying that the solutions to the initial-value 
problem can be unstable. In particular, characteristics associated with the partial 
differential equations have been shown to be imaginary and thus wave motion is 
nonphysical. Previous work has suggested that elimination of the pressure equilibrium 
assumption removes these mathematical difficulties; see, for example, StuhmiUer (1977). 

Another method of closure has been used by Krier and coworkers (Beckstead et al. 1977; 
Krier & Gokhale 1978; Butler et al. 1982) in which the pressures of the phases are not 
equal, but the pressure in the solid phase was defined in terms of the configuration changes 
of the granular material. This model is analogous to the p-0~ modelt for porous materials 
proposed by Herrmann (1969), whereby bed compaction instanteously adjusts to produce 
local pressure equilibrium. This approach cannot describe rate-dependent compaction 
effects that are known to occur during the dynamic loading of granular materials (Butcher 
et al. 1974). 

It is clear from these various approaches that model closure centers on the issue of 
describing the compressibility of each phase and the compaction of the granular bed. 
Recently, Nunziato & Walsh (1980), Passman (1977) and Passman et al. (1984) proposed 
a multiphase mixture theory which accounts for these effects using an additional 
conservation equation for the volume fraction of the solid. This equation is analogous to 
the pore collapse model developed by Carroll & Holt (1972) which is driven by pressure 
differences between the solid and gas phases and by the internal frictional effects of the 
granular bed. In this study, we shall adopt a similar approach to the problem of two-phase 
reactive flow and propose an evolutionary equation for the volume fraction consistent with 
thermodynamics. This equation is a simplified form of the Carroll & Holt model and the 
Passman, Nunziato & Walsh theory in that the inertial effects associated with bed 
compaction are assumed to be negligible. This approach results in a two-phase mixture 
theory similar to those discussed by Drumheller (1978) and Bowen (1984). 

The two-phase reactive flow model proposed here is developed in the context of the 
continuum theory of multiphase mixtures. We then apply the theory to the problem of 
DDT in a column of pressed HMX grains. Specific constitutive models for the solid and 
gas phases are established using Hugoniot, thermo-physical and Chapman-Jouguet (C J) 
detonation data. Additional constitutive equations are proposed for the interaction 

tThe ~ in this expression is the distention ratio, defined as the reciprocal of the solid volume fraction. 
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between phases which are consistent with thermodynamics. In this work, we employ a 
pressure-dependent burn law to describe the mass exchange, an experimentally-determined 
permeability for the drag coefficient in the momentum exchange and Gel'Perin & 
Ainstein's (1971) correlation for the heat-transfer coefficient in the energy exchange. The 
field equations are then solved numerically assuming an initial temperature and pressure 
in the gas phase corresponding to ignition and subsequent convective burning. The results, 
obtained for 70% dense HMX with an average surface-mean diameter of 100 #m, show 
that the transition occurs over a fairly short distance consistent with the experimental 
observations. We also report results on the effects of varying grain size and initial porosity 
and demonstrate a variety of dynamic compaction behavior by varying the compaction 
viscosity of the granular bed. 

2. ONE-DIMENSIONAL THEORY FOR REACTIVE 
TWO-PHASE MIXTURES 

2.1. Basic definitions 

In this study, we will consider the behavior of a reacting, two-phase mixture of solid 
grains and a gas. The analysis, for simplicity, will be presented in a one-dimensional 
setting; although the extension to multidimensions is straightforward. Also, it should be 
noted that all variables will be subscripted with " a "  to indicate that it is assigned to 
constituent a, either solid (S) or gas (G).t 

At the outset, we assume that each constituent may occupy any given point x on the 
real line R at any time t and we assign to each phase a phase density ya(x, t) and a volume 
fraction ~a(x, t). The phase density of a constituent is the mass per unit volume that it 
occupies, while the volume fraction of phase a represents the proportion of the total 
volume occupied by the constituent. The partial density Pa of phase a is determined by 

pa~a~)a [1]  

and the mixture density p is the sum of partial densities, 

p = Y po. [21 
Since the solid particles and the gas are assumed to occupy all the volume available, the 
mixture is said to be saturated and 

E0~a = 1. [3]  

Each phase is also assigned a particle velocity va(x, t) and the velocity of the mixture 
is the mass-weighted average of the constituent velocities: 

v -= ~ p~ v~ [4] 
P 

In considering multiphase mixtures, it is convenient to define the material (or substan- 
tial) time derivative following the motion of a particular phase. If Fa is a quantity given 
in terms of the spatial position x and time t, the material time derivative of Fo can be 
computed using the chain rule: 

r '  = ~r~ c~ro [5] 
c~t + vo ~ x  " 

Similarly, the material time derivative of a quantity F(x, t) following the motion of the 
mixture is 

~F ~F 
/~ =~- +V~x .  [6] 

tThroughout this work, we will use the terms "phase" and "constituent" interchangeably. 
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2.2. Conservation equations and entropy &equality 

In this section, we consider the general forms of the conservation equations for each of 
the constituents and for the mixture. In specifying these equations, we make two important 
assumptions: 

(i) each phase behaves as if it were a single material except when it is interacting 
and hence exchanging mass, momentum and energy with the other phase; 

and 

(ii) the conservation equations for the mixture are also the same as those for a 
single material and follow from summing the conservation equations for 
individual constituents over all constituents. 

The first assumption implies that we can write for each phase the usual form of the 
conservation equations and account for the exchange of mass, momentum and energy by 
adding a supply term to each equation. Therefore, we have for each phase [see, for 
example, Truesdell (1984)]: 

OVa 
P/' = - P °  ~-x + c"+' [7] 

pav'~ = - -  ~--~ + p.ba + m + - -  c + G [8] 

and 

~v~ Oq~ 
- ~G) .  [9] pae'~= --ZCao x OX + P a r a + e + - - r n + G - - c + ( e a  1 2 

Equation [7] is a statement of conservation of mass and expresses the fact that the time 
rate of change of the partial density of the phase is related to the density change due to 
dilatation and the mass exchanged between phases due to chemical reactions, e +. Equation 
[8] is a statement of conservation of linear momentum (Newton's second law). The rate 
of change of momentum of phase a is related to the gradient of the pressure ga, the 
external body forces ba (e.g. gravitational forces), the momentum transferred m f  from one 
phase to another (i.e. drag) and the momentum associated with the appearance (or 
disappearance) of phase a. The remaining conservation law is a statement of the first law 
of thermodynamics as applied to each phase. The specific internal energy for each phase 
is represented by G. The material derivative of the internal energy is balanced by the work 
done by the pressure, conduction heat transfer qa, external heat sources ra (i.e. radiation), 
the exchange of energy between phases e f ,  the energy associated with momentum transfer 
and the energy associated with appearance (or disappearance) of phase a. 

Our second assumption asserts that if we sum the conservation equations over all 
constituents, then we should recover the usual conservation equations for a single 
substance. Indeed, carrying out this rather tedious calculation, we obtain the mixture 
equations 

t~v 
/~ = - - P ~ x '  [10] 

OP 
P~ = - 0---~ + pb [11] 

and 

where 

Ov ~q 
Pe = - P~x - -~x + pr, [12] 

P + p v 2 =  ~OZa + p,,v2.), [13] 
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and 

pb = Zpaba, 
1 2 p (e + ½v 2) = ~p~(e~ + ~v~), 

I ,2 q + Pv + p (e + ½v2)v = ~[q~ + n.v~ + Pa(ea + ~v.)v~] 

[14] 

[15] 

[161 

p(r + by) = Zpa(ra + bat)a). [17] 

Expressions [13]-[17], along with [2]-[4], are often referred to as the summing rules for the 
mixture. Note that these definitions are consistent with the classical kinetic theory of gases. 
It should also be noted that the definition for the total pressure P includes inertial terms. 

In writing [10]-[12] for the mixture, we have also required that the interactions c +, m +, 
e + satisfy the summing rules: 

~c~ + = 0 ,  ~m~ + = 0 ,  Ze~ + = 0 .  [18] 

These summing rules impose important constraints on the processes possible in a 
two-phase mixture. For example, the first sum in [18] asserts that any mass loss of the 
grains due to combustion must be accounted for in the mass of the gas. 

An important part of our study deals with the thermodynamics of the two-phase reactive 
flow. For each constituent of the flow we will assign an entropy, r/a, and an absolute 
temperature, 7",. Following the work of Truesdell (1984), the second law of thermo- 
dynamics can be stated as the entropy inequality 

I ~ ( ~ a )  - p a r a ]  P~qa+C+~n'+~x qa Ta l >~0" [19] 

Rather than working with the entropy, it is more convenient to introduce the Helmholtz 
free energy, ~O~, given by 

~'a = e. - Tar/.. [20] 

With this change of variable and substitution of the energy equation [9], the entropy 
inequality can be rewritten as 

, , .  , , +j 
~ 1  _ p o ( q o r ; + o ; ) _ ~ . ? _ _ _ ~ _ ~ q _ ~ x _ m . v a + e 2 _ ( O _ S v a ) c .  >>.0. [21] 

This inequality imposes restrictions on the mixture's response. In the next section we 
will use [21] to obtain certain restrictions on the forms of the constitutive equations. 

2.3. Thermodynamics of two-phase mixtures 

In order to develop an understanding of the thermodynamically admissible processes in 
reactive flows involving granular materials, we need to consider the constitutive equations 
which describe the mixture's response. Here we propose such equations utilizing the 
principle of phase separation (Drew & Segel 1971; Passman et al. 1984). This principle 
expresses the idea that in a mixture of discrete phases, the free energy ~k,, the pressure 7r a, 
the entropy ~a and the heat flux qa of a given constituent a depend only on the properties 
and the thermodynamic state of that constituent. On the other hand, the interactions, i.e. 
the mass, momentum and energy exchange, c +, m~, ea +, between the two phases depend 
on the properties and the thermodynamic states of both constituents. These statements can 
be expressed mathematically by writing constitutive equations of the form: 

~Ja = ~]a(ga), 7[a = 7"Ca(Sa), ?~a = ~a(ga), qa = q.(Sa), 

c+=c+(Ss, Sc), m2=m+(Ss ,  Sc), e+=e+(Ss,S~),  [22] 
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where the thermodynamic state of constituent a (a = S, G) is the ordered array 

Sa = ~a, Ta, Ta, l)a,-~x ~ . [23] 

The precise form of these constitutive equations in any given application must reflect 
physical observations and be consistent with the entropy inequality [21]. 

It is important to note that this constitutive assumption is not sufficient to provide 
closure; that is, if the response of the mixture does indeed depend on the eight fields Ya, 
Ta, ~a, va (a = S, G), then the set of six conservation equations [7]-[9] is incomplete. As 
we pointed out previously, various solutions to this difficulty have been proposed in the 
literature. Here we write an additional evolutionary equation for the volume fraction of 
each constituent: 

e;  =f~(Ss, SG), (~ = S, G). [241 

These equations permit us to account for both the compressibility of the constituents and 
the compaction of the granular bed by recognizing the volume fraction as an independent, 
internal degree of freedom within the mixture analogous to the internal degrees of freedom 
that arise in real gases (e.g. Vincenti & Kruger 1965). In essence, [24] imply that the 
compaction of the bed is rate dependent and, upon quasistatic loading and unloading, the 
bed can exhibit hysteresis. 

We are now in a position to evaluate the restrictions the second law imposes on [22] 
and [24]. Using the chain rule, the rate of change of free energy is given by 

Ol]la 0~' ol]]a Ol~¢a ' Ol[]a ' OI]]a ( OTa ~t 
~l 'a = ~a  a -'l'- ~aa Ta "~- ~ ~ a -'[- ~ 1)a -'~ ( O Ta-----~ \ Ox ] " 

°\Ox } 
This result and conservation of mass [7], permits the entropy inequality [21] to be expressed 
as 

1 I ( OOa~ O~)a ~Oat O@a(~Z~ t 
E L --Pa tla+OT~j T'~--(rc.--~Pa)-~x --(fla--Pa)Gta--Pa'-g~Va--Pa (t~Ta~--~\OX] 

OVa 0 \ OX } 

I O T a  ( ' p a l ) ]  
T q , -~- f+ey-m+v~-C+a O , + ~ - ~ v ]  1>0, [25] 

where we have defined 

and 

Pa = 72a ~1~ [261 

/~, = ~t, Ta ~ ,  [27] 

as the phase pressure and the configuration pressure, respectively, of constituent a. The 
phase pressure describes the compressibility of the individual phases as represented by a 
mean or bulk stress. The configuration pressure fla is clearly a consequence of changes in 
the packing of the granular bed, and hence fls must reflect the contact forces between the 
grains. 

Now, we require the above inequality to be satisfied for every thermodynamic process 
possible in the two-phase mixture described by the constitutive equations [22] and [24]. It 
is possible to construct certain processes such that T'~, ~gv,/Ox, v'~ and (OT/Ox)' can take 
on arbitrarily large values of the proper sign so that the inequality can be violated. Thus, 
the coefficients of these terms must vanish and we conclude that the Helmholtz free energy 
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is a function only of  the state variables 7~, T., so: 

~,o = ¢7o(~o, T~, ~,,); [28] 

and that 

7to = ~p°,  [29] 

aO° 
rL- ate' [30] 

[ ( ) , <  2LTa e~+-m~+v"--c~+ ~l~"kfl-~a--~V2aTa --(fl"-P~)a'~--~q"~x ]>~O" [31] 

The results [29] and [30] are familar from the classical theory of mixtures; [29] expresses 
the fact that the partial pressure of  any phase is determined by volume-fraction weighting 
the phase pressure and [30] is the usual form of the entropy relation. The inequality [31] 
asserts that the dissipation in the mixture results from the exchange of mass, momentum 
and energy between constituents, heat conduction within the constituents and a viscous 
effect associated with the internal adjustments in volume fractions. 

Finally, we note for future use that as a result of [20] and the entropy relation [30], the 
free energy ~ determines the internal energy e~ through the relation 

ea = ~ - T~ ~-~. [32] 

2.4. Dissipation models and the governing partial differential equations 

The dissipation inequality [31] provides information useful in formulating specific 
constitutive equations for the exchange functions c2, m~, ea +, the evolution of the volume 
fractions c~, and the heat flux q~. To this end, we need to rewrite [31] utilizing the 
constraints [31 and [18]: 

c~ = - c~-, [33] 

m~ = -m~-,  [34] 

e~ = - e ; -  [351 

and 

C(X s 
~G = - : s + ( V  s -  VG) ~XX" 

Thus, expanding [31], it is not difficult to show that 

1 ~Ts 1 (?T s 1 ( , c~-'~ 
--ST2qS ~X 1 G4:' qG-'7---OX + ~ CXS-- YS / [(Ps--flS)--(PG--flG)] 

+(~s  roJkl ~[eE_mE~s+(ps_#s)(~_cE~_cE(es_½v~)]~t~, 
1 FcE &s _ mE 1 

+ (vs - v ° ) L T  + + (p° - # ° )  -g;x 
.A 

TG~s 

In writing the inequality in this 
involving temperature gradients, 

[361 

[37] 

form, we have deliberately collected together terms 
temperature differences, the difference between the 
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change in solid volume fraction and the volume lost by the solid grains due to combustion, 
velocity differences and the reaction rate--choices that are guided by physical intuition 
and/or experimental observations. In this form, [37] suggests specific constitutive equations 
for qa, ~t'a, C, +, m~ and ea + which have clear physical interpretations. Specifically, we note 
that a sufficient, but not necessary, condition for satisfying [37] is to require each term of 
the inequality to be nonnegative. Then there exist nonnegative functions, ka, h, /~,, 6, E 
which depend upon the thermodynamic state Sa of each phase, such that 

eTa 
qa = - k, --~-x ' [38] 

e~--m~vs+(Ps-c/s)(  ~x~-c~-c~(es-½v~)=h(Tc-Ts,I Ts), [39] 

CCC~s[(Ps -- C/S) -- (pc -- C/G)] = #c (~ - -  C~ ~, [40] 
~s / 

c~-2 (Vs + VG) + (Pc -- C/C) ~X -- m~- = d(v s -- vc) [41] 

and 

7sTG To 1 

These results can be rearranged to give 

c[  = -E(0 +Pc) ,  [43] 

0~s 
m~- = (Pc - c/a) 7 x  - D + c~  Vs, [44] 

[ ~X ] ( c~'~+c+(es+' e~-= (PG--C/G) - -D vs--(ps--C/s) ~ - -  Ys,] s 5 v ~ ) + H,  [45] 

~ = ~s~c [(Ps -- c/s) - (Pc - c/c)] + c_~_~ [46] 
#c Ys 

and 

where 

qa = -k~ t3T~ 
c~x' [47] 

o -  (;,o~'s~'~ [(q,s - ~,o) - (7~o - _  ~,s) Ts),Ts + ( ~  c/s - C/o) ~ ], [48] 

D (6 i + = + ~ Cs )(Vs - vG) [49] 

and 

H = h(Tc -- Ts). [50] 

Each of these dissipation models reflects an important aspect of the combustion process 
in a granular bed. Equation [43] provides an expression for the kinetics of the chemical 
reaction associated with the burning of the grains. In particular, it represents the burn rate 
describing the mass exchange as linearly proportional to the gas pressure. Such a pressure 
dependence of the burn rate has been widely accepted in the combustion literature for some 
time and has generally been regarded as empirical (e.g. Williams 1965). Here we observe 
that the formula is consistent with thermodynamic restrictions. Also, we note that the 
coefficient 0 in the burn law depends on the difference in free energies (~Os, ~'G). Thus, 
consistent with classical thermochemistry, the burn rate model [43] in some sense reflects 
the amount of chemical energy available. The coefficient c is physically related to the 
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surface-to-volume ratio for the grains and a characteristic time for the reaction. Hence E 
will be referred to as simply the kinetic shape factor. The equation for the momentum 
exchange [44] includes the effect of the drag forces D acting on the particles due to the 
flowing gases and 6 is referred to as the drag coefficient. It is important to remember that 
this coefficient depends on the geometry of the grains and is inversely proportional to the 
permeability of the granular bed. It is also clear from [44] and [49] that since c~- is negative, 
the apparent drag force D on the burning grain is reduced and can conceivably change 
sign. The possibility of a negative drag has been suggested for ablating particles in 
high-speed gas flows (see Williams 1965; Crowe et al. 1963). The energy exchange given 
by [45] includes the work done by the drag forces, the work done in compacting the 
granular bed and the convective (Newton-type) energy transfer H that results from each 
phase having a different temperature. Here h is the heat-transfer coefficient and it too 
depends on the particle size. Equation [46] expresses the fact that changes in the volume 
fraction other than that due to combustion are related to pressure differences existing 
between phases and the configuration pressures. In this context, fls and fig are pressures 
which resist changes in the packing of the bed and hence compaction. Without loss in 
generality, we can ascribe this resistance to the contact forces acting on the solid and hence 
set f i g -  0. It is useful to note in this case that the burn-rate coefficient 0 reduces to 

0 (?#~7s) (#Js-qJc)-(T°--Ts)qS+Ts?s] 
and it follows that the burn rate will increase with increasing resistance to bed compaction. 
The coefficient pc is interpreted as the compaction viscosity and if Pc vanishes, then [46] 
implies that the pressure in the solid grains equals the pressure in the gas plus the pressure 
due to contact forces between the grains: 

Ps = Po + fls- [52] 

Finally, [47] expresses Fourier's law of heat conduction where k, is the thermal conduc- 
tivity of phase a. 

Using the models [44] [47] suggested by the dissipation inequality, along with [5] and 
the conservation equations [7]-[9], we obtain the partial differential equations governing 
DDT of granular explosives: 

conservation of mass 

and 

conservation of momentum 

 ,vsl 
L at +vs ] 

and 

C~ps + _~0 O--t- c3x (psVs) = c~ [53] 

~- +~x (p~vo) = -c~-; 

•Ps ~ ~ S  1 
= -aSffx- x + (Pc -Ps~ fix- x - (6 + ~ c~-)(Vs - re) 

[54] 

[-aVo  vo7 
P°L +vo ] 

conservation of energy 

PsLa t + v s ~ ] = - ~ p s ~  ax 

[55] 

OPo - i C s  )(v6 - Vs); [56] = - , C - ~ x  (6 ' + 
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Ip O~s 
- -  G ~ -  x 

compaction 

and 

rOeo Of 61= OVG 6 ( ~ )  
pGLO t +VG 0XJ --~GPG--~-X +~X kG -h(TG-Ts) 

- --6(Vs--VG)J(Vs--VG)+ (Ps--fls)(~-c~-]ys) +cE(eG--es); 

and 

O~s . O~ts asaG [Ps - (PG + fls)] + ~- 
c3t -t- v s ~x - kt¢ Ys 

[58] 

[59] 

~G = 1 - ~s. [60] 

Here c~ is given by [43] and Pa and ea are determined by the Helmholtz free-energy function 
~a through [26] and [32]. 

Upon inspection of these equations, it is evident that our theory also describes two other 
important effects governing flame spread and the subsequent formation of shock waves 
which lead to detonation. In the momentum equation for the solid [55], the term involving 
the pressure difference represents the forces associated with the motion of the grains when 
they are no longer in contact. In that instance, the pressure gradient term becomes small 
as ~s --' 0. Secondly, the compressional energy associated with the pressure in the solid, Ps, 
influences the behavior of both the solid particles and the gas. Note also that both energy 
equations include convective energy transport. 

3. EVALUATION OF THE CONSTITUTIVE EQUATIONS 

Before solving the partial differential equations governing DDT given by [53]-[60], 
equations of state for the solid and gas-phases are specified and specific constitutive 
equations for the drag coefficient 6, the thermal conductivities ka, the compaction viscosity 
#c, the heat-transfer coefficient h and the kinetic shape factor E are determined. For the 
purpose of illustrating the main features of the theory and showing that it does describe 
the observed phenomena, we chose to consider a granular explosive which has been the 
subject of DDT studies in the past and whose physical properties are well-known. Hence 
we consider a column of HMXt grains pressed to 70% theoretical maximum density 
(TMD). The grains are assumed to be spherical with a 100 pm dia. 

3.1. Equations of state 
Important inputs to the multiphase model are the equation-of-state descriptions of the 

solid reactant and the gaseous combustion product. For the solid reactant, a thermoelastic 
description of the Helmholtz free energy (Sheffield et al. 1977) is used: 

{ [  '11 r0 } @s(Ys, r s )=C,  ~, ( r s - V g )  l + F s Y s _ ~ - - - ~  +Tsln 
kYs Ys) k, Ts) 

KT r {Ts~N-'_ (N 1)(1 7°'~ 1] [61] 
4 ?ON( N 1) ~ - -- -- " 

The constants in this description are obtained from Hugoniot and thermophysical data. 
The solid pressure and internal energy, Ps and es, are then obtained using the thermo- 
dynamic identities given in [26] and [32]. 

For the combustion product gas, an equation of state is employed that can describe the 
highly-expanded to the very-dense thermodynamic states. In this study, the 

tHMX, C4HsN8Os, is a colorless polycrystalline explosive. 
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Jones-Wilkins-Lee (JWL) equation of state is used; see, for example, Kury et al. (1965) 
and Lee et al. (1968): 

( - coTG'] ( ( coT°'~ex f-Rzp°'~ p~=A 1 Rlpojexp - -  + B  1 -  7G ,/ RzO°sJ p ~ 7o ) + m76e~. [621 

The state relationship is a five-parameter model (A, B, R~, Rz, co), whose constants are the 
best fits to experimental measurements and hydrodynamic calculations of explosively- 
driven cylindrical expansion experiments (Lee et al. 1968). This equation of state 
adequately reproduces the CJ detonation data (Stanton et al. 1981), when the constants 
are permitted to vary with the initial density of the reactant, ps °. Table 1 lists the 
equation-of-state and thermophysical data for HMX as taken from Gibbs and Popolato 
(1980) and Dobratz (1981). A thermodynamically consistent relationship for gas tem- 
perature is then determined from the thermodynamic relations [26] and [32]: 

T~ Z~ eG+AHd,,-  - - e x p  - , [63] =ev AR, p° \ - -~ - -~  / t~R--~seXp ~ / 

where c~ is the gas specific heat and AHd,t is the heat of detonation (estimated using 
thermochemical data). 

3.2. Phase interactions 
The remaining constitutive equations which are needed are the phase interactions 

describing the exchange of mass, momentum and energy between phases and the 
evolutionary equation for the solid volume fraction. Although the second law of 
thermodynamics has suggested a form of these constitutive equations, the coefficients of 
drag (&) and heat transfer (h), the kinetic shape factor E and the compaction viscosity 
/~c have yet to be determined. Unfortunately, the only relationships currently available are 
empirically based and have not been experimentally tested under flow conditions corre- 
sponding to accelerated flame spread in a granular bed. Nevertheless, we shall adopt the 
existing correlations and assume that they hold in the appropriate flow regime. 

First, we consider the burn law and the shape factor E. As a result of thermodynamics, 
a burn rate is proposed of the form 

c ~- = - E (0 + Pc), [64] 

where 0 is a function of the state of both the gas and solid. Although combustion occurs 
in the steps of solid decomposition, pyrolysis and gas-phase combustion, a simplified 
model, valid in the limit of fast chemistry, is used. Thus, the solid is directly converted 

Table  1. Equat ion-of -s ta te  and  thermo-  
physical  da ta  

Variable H M X  
lcgs units] (p0 = 1.33 g /cm 3) 

),0 [g/cm 3 ] 1.90 
cSv [erg/g K] 1.5 × 107 
K t [dyn/cm 2] 1.35 × 10 tl 
Fs7 s lg/cm 3] 2.1 
N 9.8 
AHde t [erg/g] 7.9 x 101° 
A [dyn/cm 2] 2.4 x l012 
B [dyn/cm 2] 5.0 × 109 
R I 4.2 
R 2 1.0 
o) 0.25 
c~ [erg/g K] 2.4 × 107 
k G [erg/cm s K] 7.0 × 103 
P6 [gm/cm s] 5.0 × 10 -4 
k s [erg/cm s K] 4.0 × 104 
Iz¢ [g/cm s] 1.0 × 104 
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to fully-reacted combustion product gas. In the present analysis, we will also assume that 
the gas pressure dependence of the burn law dominates the DDT and consequently 
approximate [64] with Pc ~> 0. The resulting expression is of the standard form for 
pressure-dependent burn laws with a pressure exponent of unity. The combustion at the 
surface of a spherical particle suggests a shape factor, E, consisting of three effects; the 
surface-to-volume ratio of the particle, the depletion of the particle, and a characteristic 
recession velocity Ws for individual grains. Thus, E is given as 

37s (as)2/3 Ws 
E = a t 0~l/3,,rer' [65] 

~ S \ ~ S !  F G  

It is apparent that smaller particles and particles less densely packed burn more rapidly. 
These observations are consistent with experimental results on HMX (see Boggs e t  a l .  

of Pc -109dyn/cm2, the burn velocity of HMX, ws, is 1984). At a reference pressure ref_ 
approx. 10.0 cm/s. 

Embodied in this simplified model is a description of the chemical reactions which 
actually occur during the combustion process; however, an ignition criterion is necessary. 
Although combustion begins at the grain surface, ignition may be achieved before the bulk 
temperature of the grain reaches the temperature which produces thermal decomposition 
of the grains. Thus, as a simplification, reaction is assumed when the volume-weighted 
temperature of the two-phase mixture reaches an "ignition" temperature, or 

c~- = 0  when ( ~ s T s + ~ c T c ) <  Tig,. [66] 

The value of the constant T~g, was chosen to be 450 K which is the melt temperature of 
solid HMX. Detailed combustion models including local thermal and species structure of 
the gas and solid phases as well as models of the "hot spot" mechanisms are currently 
active areas of combustion physics research. Much has yet to be clarified before a more 
definitive ignition criteria is warranted in the modeling. 

From the previous section, the drag force on the particles were shown to be of the form 

D (6 l + = +~Cs)(Vs-Vc) .  [67] 

Various models have been proposed in the literature for the drag coefficient 6. In this study 
we use a correlation obtained by Shepherd and Begeal (1983) as determined in an 
experimental study of shock-induced, high-speed gas flow in a porous bed shock tube. The 
interphasial drag was scaled to the Ergun (1952) relationship using the Darcy number as 
recommended by Dullien (1979): 

6 =#--'9-G ( 1 + ~ ' R e ' ] ' r c  COS / [68] 

where Po is the gas viscosity and Re is the Reynolds number based on the initial grain 
diameter ds: 

Re = P~ [vc - Vs [ds. [69] 
#G 

The ~¢ is the experimental permeability deduced from the transient pressure drop 
measurements fit according to 

2 4.5 . x = ds~c/~2, [70] 

(j and (z are data fit constants, respectively 0.01 and 33. The dependence of 6 on the 
Reynolds number indicates that in high-speed flows, the gas flow is non-Darcy and that 
local inertial forces can be important since the drag coefficient 6 increases with Reynolds 
number and solid volume fraction. 

For the convective heat exchange between the particles and the gas, 

n = h ( T  G - Ts). [71] 
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The heat-transfer coefficient h is given by a correlation by Gel'Perin & Ainstein (1971): 

h --- 12kG 
d---7-s ~3[1 + 0.2(Re)Z/3(pr)l/3], [72] 

where Pr is the gas Prandtl number defined by 

Pr - / ~  c vG 
kG [73] 

For the thermal conductivities of the phases, ka, appropriate thermophysical data are used, 
as given in table 1. Additionally, a correction in the gas-phase conductivity has been 
included to treat thermal radiation from hot optically-thick combustion gases. 

The evolutionary equation governing the change in the solid volume fraction as is new 
and has not been studied either experimentally or theoretically in the past. Consequently, 
we have no real basis on which to determine the compaction viscosity #c- As an 
approximation, kl c is considered a constant whose magnitude is estimated using a simplified 
transport model similar to that posed in the kinetic theory of gases using the mean particle 
diameter, ds, as the mean-free-path and the solid-phase sound speed, Cs: 

#c ~ 7s Cs ds. [74] 

The configurational stress,/~s, is estimated using experimental quasistatic compaction data 
inferred from the mechanical loading on a granular column. Figure 2 shows this stress at 
various solid volume fractions of HMX (Schwarz & Kopczewski 1982). 
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Figure 2. Quasistatic stress during pressing of an HMX granular column to various solid volume 
fractions. 

4. N U M E R I C A L  METHOD OF SOLUTION 

4.1. Initial and boundary conditions 

To evaluate the applicability of this multiphase flow model, the combustion and 
subsequent detonation of a column of granular explosive is considered. The effects of the 
lateral boundaries are neglected and thus the one-dimensional model outlined in section 
2 is appropriate. In this view the column corresponds with an interval [O, L], of the real 
line R where L is the column length. 

In formulating this problem, boundary conditions are prescribed at x = 0 and x = L. 
At the ignition end (x = 0), reflection boundary conditions are employed which yield 
vanishing gradients of the dependent variables: phase density, phase volume fraction, 
phase temperature and zero phase velocity. The zero velocity condition for the gas and 
solid also requires that the second derivative of mass flux be zero. Thus, at x = 0, 

ap. a~. aT, 
8x 3x 8x O, t >~ 0, [75] 
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and 
t32 

Ox 2(povo)=O, t />0 ,  ( a = S , G ) .  [76] 

Note that by virtue of  the results for the constitutive equations [26], [28], [32] and [47], 
[75] and [76] also imply 

Op~ Oe~ 
- = 0 ,  t ~ > 0 ,  [ 77 ]  

Ox Ox 
and 

qa=0 ,  t>~0, [78] 

at x = 0, and hence there is no flux of heat at the ignition boundary. At the opposite end 
of the granular bed (x = L), zero gradients are imposed on all dependent variables. This 
permits material to flow out of  that end of  the column (va :A 0) and thus there is no influence 
of the downstream conditions on the flow field. 

For  the present analysis, we will use the initial conditions to simulate an ignition 
condition which has resulted in a small burst of high-pressure (108dyn/cm 2) hot com- 
bustion gases. Over a short distance LI, 0 ~< x ~< Li '~ L, a linear variation of  gas pressure 
and temperature is assumed to initially exist in the bed: 

pG(X,O)=I(PG)I(I--~l)' O~x <~L l [79] 

10, Lj < x  ~<L 

and 

where To is the reference temperature of the bed (nominally 300 K). This suffices to initiate 
the combustion process in the bed provided the temperature (T6)I resulting from the 
ignition source exceeds the ignition criterion for the solid grains.t 

4.2. Numerical solution procedure 
The numerical solution of the conservation equations [53]-[59] is obtained using a 

method-of-lines (MOL) approach. This method is easy to implement and takes full 
advantage of ordinary differential equation (ODE) solvers which have been extensively 
developed. Contrary to most finite-difference methods (e.g. Ames 1977) i.e. the 
Lax-Wendroff  or McCormick methods, the space and time discretization of the partial 
differential equations (PDEs) are decoupled and analyzed independently. Temporal 
numerical stability is maintained by variable time-step control within the ODE solver. 

The numerical formulation of  the MOL follows closely the work of Hyman (1979), in 
which a general system of the conservative equations is considered: 

c~F OG 
- + S ,  [ 81 ]  

¢?t ¢?x 

where F is the 7-dimensional vector whose elements are the dependent variables 
(Ps, as, Vs, es, RG, VG, eG), G is the flux vector which can be a nonlinear function o fF ,  and 
S is the source vector. A discrete grid is then defined consisting of N + 1 points, denoted 
by an index i, with the left-hand boundary at i = 1 and the right-hand one at i = N + 1. 
At each node, the PDEs are evaluated: 

63Fi ~G i 
- - -  + S , .  [82 ]  

¢?t t?x 

tln the present study, it is seen that as convective burning becomes established the initial ignition conditions 
are quickly modified due to the effects of gas permeation. 
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Space discretization of the flux vector Gi is then approximated using centered differences. 
To second order, O(Ax) 2, these are represented as 

0~- - 2Ax + O _ (Ax2) c~x 3 j ,  [83] 

where Ax = L/N. It is to be noted that truncation of this approximation leads to errors 
of two classes: dispersion and dissipation. Some degree of dissipation is usually necessary 
to stabilize differencing methods and thus the choice of second-order spatial difference is 
made. An alternative approach would be to use higher-order differencing with the addition 
of increased artificial viscosity. 

The boundary conditions at both ends of the column are incorporated in the differenced 
flux and the system of  N + 1 ODEs are advanced with time, t. Thus, for i = 1, 

dFl r/GI 
- - -  + S , ,  [ 8 4 ]  

dt Ax 

if the flux is symmetric and r/ = I if the flux is asymmetric; and for where r /=  0 
i = 2  . . . . .  N, 

d F i  _ ( G i _  ! - G i _  i )  
+ Si. [85] 

dt 2Ax 

The outflow boundary condition given at i = N + 1 is represented using 

dFN + 1 
d - ~  = SN +,. [86] 

The initial conditions for Fi, i = 1, 2 . . . . .  N + 1, are defined by the pressure and 
temperature variation in the gas due to the ignition source. Equations [84]-[86] consist of 
a system of  7(N + 1) ODEs which are solved using an implicit solver (DEBDF) developed 
by Shampine & Watts (1980). This integrator uses backward-difference formulas approp- 
riate for the solution of stiff problems. 

A frequent problem inherent in the numerical solution of hyperbolic conservation 
equations is the occurrence of nonphysical high-frequency waves or dispersive errors. The 
traditional method of reducing these effects is to introduce additional artificial dissipation 
in the equations (von Neuman & Richtmyer, 1950). In addition to the dissipation of 
truncation error, a minimal amount of additional artificial viscosity is used to provide 
sufficient local dissipation at shock fronts to satisfy Rankine-Hugoniot  conditions. The 
form of artificial viscosity chosen in this study is that of Rusinov, in which a second- 
derivative dissipation term is included in all of  the field equations: 

~u =V~x  )a . [871 

The artificial viscosity coefficient v is chosen to be proportional to the grid spacing and 
2~ is the maximum characteristic of the multiphase equations. As shown in the appendix, 
absolute characteristics are defined as 

,+,: = Iv°l + co, [88] 

where c= is the sound speed for phase a. 

5. RESULTS 

Using the aforementioned theory and model inputs, one-dimensional calculations are 
sought which describe flame spread in a 10 cm long column of  HMX packed to a 70°/'0 
initial density with uniform particles of a surface-mean diameter of 100 ktm. The numerical 
grid was chosen to consist of 201 computational nodes distributed evenly throughout the 
column. (Several numerical experiments were performed with two- and four-fold increases 
in the number of computational nodes and only slight changes in the combustion wave 
characteristics were observed. This assured that adequate grid resolution was attained and 
that artificial viscosity effects were minimal.) 
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Figure 3. A comparison of the calculated and experimental distance-time burn front trajectory. 

Displayed in figure 3 is a numerical-experimental comparison of the trajectory of the 
burn front with time. The experimental data was obtained by Price & Bernecker (1978), 
as determined by the triggering of ionization pins embedded in the granular bed. As seen 
in this comparison, burn duration, deflagration wave speed, detonation wave speed and 
the distance to detonation were reproduced well. 

Details of the temporal and spatial variations of the solid and gas pressure, temperature, 
velocity and density are shown in figures 4-7 for the above baseline case. First, the 
evolution of solid and gas pressure is shown in figure 4. For the gas phase, early-time 
combustion behavior is dominated by the effects of gas permeation. Following ignition, 
a pressure gradient is produced that induces flow into the unreacted pores. Only a small 
rise in pressure (less than a few kilobar) is typical of this burning regime. As combustion 
continues, the gas generated in the primary flame zone exceeds that which can be 
permeated ahead of the combustion front and the rapid pressurization occurs. Since the 
combustion rate increases with gas pressure, continued pressurization occurs and a very 
large pressure gradient is eatablished. At this point, the inertial effects become important 
and the multiphase hydrodynamics form a compressive shock wave. 

The solid pressure wave forms exhibit similar behavior. However, the similarity of the 
pressure wave forms is deceptive and by no means is pressure equilibrium to be implied. 
Details of the computations clearly indicate pressure differences of tens of kilobars, 
particularly near the combustion front. In these calculations, it is seen that the gas pressure 
leads that of the solid phase during the early phases of combustion and as the shock wave 
forms, the stress in the solid overtakes the leading gas pressure front, whereupon shock 
compression heating dominates the final stage of acceleration into detonation. 

The solid and gas temperatures are shown in figure 5. During convective burning, the 
hot combustion gases are forced into the unreacted pores providing the mechanism of 
enhancing flame spread. As the combustion becomes accelerated, the gas within this zone 
is trapped and gas compression occurs as the bed becomes compacted. Quickly the gas 
temperatures rise to temperatures approaching 10,000 K. In experiments with heavily 
confined charges of crystalline explosives, streak camera observations of the burning 
columns indicate abrupt changes in radiance output from the high gas temperatures of the 
combustion flame front as compressive deflagration is initiated; see, for example, Baer et 

al. (1984). As the combustion gases expand, they cool to the temperatures predicted by 
equilibrium thermodynamics. The effect of compressional heating of the solid is seen 
during the later stage of burning into detonation. 

M F 126~B 
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Shown in figure 6 are the gas- and solid-phase velocities. Similar wave forms are 
predicted for both phases which indicates strong influences of momentum exchange. It is 
the effect of interphase drag which causes mechanical load transfer from the gas to the 
solid phase, providing the mechanism for shock formation in the solid phase. The densities 
of the phases are shown in figure 7. Significant compressional effects for both phases are 
to be noted, particularly near the combustion front. As a characteristic of this gas-solid 
reactive flow, high-density combustion gases evolve as a result of the high confinement and 
high resistance of the gas flow into the bed. This result demonstrates the importance of  
using equations of state which can describe very dense thermodynamic states. 

To display the development of compaction during combustion, the variations of the 
solid volume-fraction profiles are shown in figure 8. During convective burning significant 
compaction is seen ahead of  the burn front. This wave grows in extent and amplitude to 
approx. 85% of the total void closure. However, with this greatly increased flow resistance, 
the gas permeation layer collapses and rapid pressurization accelerates the combustion and 
erodes away the compacted region faster than it can be formed. Finally, a steady 
compaction zone is achieved which propagates with the detonation wave. 
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Figure 8. The evolution of the solid volume fraction during burning of HMX. 

Since several phase interaction effects are dependent on the specific surface area of  the 
granular material, calculations were performed varying the initial particle diameter, ds, in 
a 70% dense HMX column. Figure 9 is a plot of the run distance to detonation at various 
particle diameters. The run distance to detonation was determined from the predicted 
ignition front trajectory as the predetonation length from the initiation of  convective 
burning to the location of the onset of steady detonation. Shown in this figure are data 
by Price & Bernecker (1978) and Campbell (1980). Some offset to this data is seen which 
may be a result of the initial wave structure used to begin our calculations. Additionally, 
the initial particle size given in the experiments may not reflect a true particle size when 
packed in a dense column, since HMX is known to massively fracture during pressing. In 
spite of these uncertainties, the correct trends on the effect of particle size are predicted 
for ds > 20 #m and it is seen that the run length to detonation increases with increasing 
particle size (and subsequent reduction of specific surface area). For very fine HMX, 
detailed combustion models including pyrolysis and "hot  spot" mechanisms may be 
necessary to attain better agreement between the calculations and experiments. 

Figure 10a shows the variation of  run length to detonation with the initial solid volume 
fraction. Similar to the findings of Griffiths & Groocock (1960), a minimum predetonation 
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Figure 9. A comparison between calculated and experimental run length to detonation at various 
particles diameters. 

length is predicted at an initial volume fraction of s ° ~ 0.7. As the porosity is increased, 
weakened drag forces allow more gas flow into the unreacted regions and thus slow the 
pressure buildup behind the flame front, which delays the onset to detonation. At the other 
extreme of low porosity, large amplitude compaction waves are formed which impede the 
convective burning process. In figure 10b the time to detonation (relative from the onset 
of  convective burning) better demonstrates the effect of gas permeation. Interestingly, the 
minimum time to detonation occurs at an initial volume fraction of s ° ~ 0.8, which is the 
condition where compaction during combustion first achieves total void closure during 
combustion. 
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Figure 10. (a) The run length to detonation and (b) the time to detonation at various initial solid 
volume fractions of HMX with a surface-mean particle diameter of 200 # m .  

In studying the effects of compaction during combustion, the combustion in a highly 
dense column of H M X  (s ° = 0.95) was considered and the resulting wave profiles are 
shown in figures 11 and 12. The various wave features have been outlined on these plots. 
In the gas pressure figure, the gas permeation front extends from the maximum pressure 
during deflagration to the trailing edge of the compaction wave. As combustion grows into 
detonation, a pressure disturbance passing back into the reacted two-phase combustion 
region is seen as rapid combustion encounters a completely compacted plug. Very rapid 
pressurization is then seen to eventually produce a detonation wave structure. 

In figure 12 the solid pressure plots show evidence of a compaction wave and a pressure 
disturbance of  ~ 4 k b  propagating ahead of  the gas permeation front. The onset of 
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<~0 0 

Figure 11. Gas pressure wave profiles during the combustion of 95% dense HMX. 

detonation is seen as the point where the trailing and leading edges of the compaction wave 
coalesce. To better display these pressure waves, figure 13 is an overlay of solid and gas 
pressures at a time of 20/~s. Clearly, the pressure waves indicate nonequilibrium behavior. 
At this time, the extent of the zone of complete void closure is of length approx. 2 cm. 
Figure 14 shows the temporal variation of the solid volume fraction for this high-density 
case. It is evident that the formation and development of the compaction wave produces 
the delay in the onset to detonation. 

Compaction 

,notion 

20, 0 

Figure 12. Solid pressure wave profiles during the combustion of 95% dense HMX. 
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Figure 14. The evaluation of the solid volume frac- 
tion in 95% dense HMX showing the formation of 

a solid impermeable plug. 

In a final series of calculations, the compaction wave behavior is studied by varying the 
compaction viscosity, #c. This parameter was varied from 103 to 106g/cm s and the 
comparative pressure wave forms and the compaction wave structure are shown in figures 
15-18 at 25 #s following ignition of a 70% dense HMX column. As the compaction 
viscosity is reduced, solid and gas pressures rapidly equilibrate, and a large amplitude 
compaction wave develops. However, at very high values of #c, pressures in both phases 
are greatly disparate and very little compaction occurs. From this result, it is evident that 
the rate of pressure equilibrium has a significant influence on the compaction behavior and 
more experimental guidance is needed to better assess a compaction model. 
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Figure 15. The gas-solid pressure wave profiles and the solid volume fraction at t = 25/as during 
combustion of 70% dense HMX with/ac = 104 g/cm s. 

6. SUMMARY 

In this study, we have demonstrated that a reactive multiphase mixture model can 
adequately describe the complex combustion processes associated with convective burning, 
compressive deflagration and the growth to detonation in a granular explosive. The 
formulation of this thermodynamically-consistent model treats each phase as compressible 
and in complete thermodynamic nonequilibrium. Therefore, it is well-suited for description 
of the various thermal and mechanical processes leading to detonation. Although our 
studies have focused on the application of reactive multiphase flow, the framework of the 
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Figure 18. Baseline case at t =25#s  with #c= 106g/cms. Pressures are disparate and little 
compaction occurs. 

model may be applicable to other multiphase flows where nonequilibrium effects are 
suspected to be of major importance. 

In this study of the flame spread in the explosive HMX, we have demonstrated adequate 
resolution of the combustion physics for situations where rapid gas pressurization is the 
dominant mode of producing DDT. The incorporation of detailed combustion models and 
micromechanical models describing various "hot spot" mechanisms will further expand 
the applications of the mixture model approach. Future work will be directed toward this 
implementation. 
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A P P E N D I X  

Characteristics of Two-phase Mixture Equations 

In this appendix, the characteristics (or eigenvalues) of the proposed multiphase field 
equations are determined, following Courant & Hilbert (1962), to demonstrate that these 
equations are stable in the sense of von Neuman [see, for example, Hicks (1980)]. Thus, 
wave motion described by these equations is physically and mathematically well-posed. 

In this analysis, the following definitions are first provided: 

ma = PaUa, E, i 2 = p , ( G + i v a ) ,  (a = S, G). 

The state vector, F, is then defined as 

FT = { Ps, ms, Es, 7s, PG, me, Ec }. 

For a two-phase system, the density variables are related using the saturation constraint 
and by the definition 

7sPG 
7C = (Ts -- PS)" 

Additionally, the Grfineisen coefficient for each phase, Fa, is defined as 

F -_I (OP~; 
7a \ Oeo j 

and the frozen sound speed, co, is determined by 

z = (3p.~ +P"F~. 
Ca \07aJea 7a 

The field equations given by [53]-[59] are recast into the state vector variables, excluding 
the diffusive conduction flux, and generalized into the form 

OF OF 
+ B(F) Td = 

where B(F) is a real 7 x 7 array. 
The eigenvalues of the B(F) matrix are determined by 

det[IB - 2 B I = 0 .  
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The structure of the matrix is 

- 2  1 0 0 ] 0 0 

B21 (822 -- 2) B23 B24 ] 0 0 

B31 B32 (B33 -- ,~) B34 [ 0 0 

941 942 0 (B44 -- )o) [ 0 0 

0 0 0 0 ] - 2  1 

B61 0 0 B64 ] B65 (866 -- / . )  

B71 0 0 B74 ] B75 876 

0 

B67 

(B77 - /~ )  

where: 

( P s ~ -  _ _ ( P c )  m~ Fs ~s) ( m~ Es Ps'] B21-- Es -- ; B31= ms _B:l + - -  -- ; 
7s P~ Ps " Ps \ P~ Ps ~s/ 

8 4 1 - - 7 s m s .  B 6 , = 7 ~ ( c ~  pc,Fc']. BT, mCB61+Pc,(ms mc']; 
P~ ' ~s 7c / '  Pc 7ckPs Pc~ 

B22 ms ( 2 - F s ) ;  B32 Es Ps msFs ~s = = - - +  , ," B42=- - ;  B23 = F  s; 
Ps Ps 7s P g Ps 

B33=ms(l+Fs); B24=PS[c~- psFs ( P s - P c )  1. 
Ps ~'s k 7s 7s d 

• ( pcr~)psTc. B34_msB24 B44=ms" B64=-- c~ 
Ps ' Ps' ~c, J 72 ' 

B74_ mc,B647C, ( rasps mc'] / 7 2S ' B65 = c5~ PcFc~,,c, m~;p ~ VC Ec, - mEpo / ~; 

__(  m~, Ec Pc,.~_£) mc, 
B75= mG B65+ ; B66 = - -  (2 - / ' G ) ;  

Pc P~ Pc Pc 

876=Ec+pc, m~Fc. and B67=FC,; B77=m~(l+Fc,). 
Pc 7c p~ ' Pc 

Accordingly, the lower right 3 x 3 and the upper left 4 x 4 submatrices can be 
triangularized independently of the rest of the matrix. Therefore, the eigenvalues of the 
complete matrix are given by the products of the eigenvalues of the submatrices. After 
reducing the algebra, the determinate is factored as 

(2  - Vs)2(2 - Vs + Cs)( ) .  - Vs - C s ) ( 2  - v c , ) ( 2  - t,c, + % ) ( 2  - vc, - % )  = 0, 

which yields the following array of roots: 

; T  = {Vs, vs ,  vs + Cs, vc,, vc  + cc,}. 

All characteristics are seen to be real, as required for stability. 
Interestingly, one sees that the characteristics depend only on single-phase variables and 

can be separated as those belonging to the solid phase 2 s (i = ! . . . . .  4), and those to the 
gas phase 2~ (i = 5 . . . . .  7). In the limit, as one phase vanishes from the system, the set 
conforms to well-known single-phase eigenvalues. 

The associated eigenvectors, !i (i,j = 1 . . . . .  7), can then be determined. The left 
eigenvectors are define, viz. 

IT(~ -- LO = 0 
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o r  

( t  T - 2,1)li = O, 

and the system of equations is said to be hyperbolic if the eigenvectors are independent 
and the field equations can then be transformed into characteristic form: 

/T(~F + 2 0 F  ~ \~t ~ )  =/T S(F)" 

I t  is noted that i f  L s #- ,~,G and ). = ;c s, the solut ion to 

i - - 2  s B65 BT, \ /1!\ 

tlo (B66 - /~S) B76 I Ill61 = 0  

B67 (nTT- ;*~,)1 \z'd 
requires / j= 0 (j = 5 . . . . .  7). As such, the dependent variables on the l.h.s, of the 
solid-phase equations (in characteristic form) consist only of solid-phase variables. 
However, for 7, =2 ,  °, li:/:0 and the compatibility equations represent total-phase 
equations. Since the Vs eigenvalue is repeated, the independence of the associated 
eigenvectors is checked by substituting 2 = Vs and solving for the eigenvectors. These 
independent vectors are 

l ; =  - e s - I - ~ - - ~ ) , - v s ,  l ,O,  0, O,O , 

and 

ti= {0,0,0, 1,0,0,0}. 


